FIRE FREQUENCY AND THE SPATIAL AGE MOSAIC OF THE MIXED-WOOD BOREAL FOREST IN WESTERN CANADA

2000 ◽  
Vol 10 (4) ◽  
pp. 1162-1177 ◽  
Author(s):  
J. M. H. Weir ◽  
E. A. Johnson ◽  
K. Miyanishi
2021 ◽  
Vol 4 ◽  
Author(s):  
Emily Lloret ◽  
Sylvie Quideau

Boreal forest soils are highly susceptible to global warming, and in the next few decades, are expected to face large increases in temperature and transformative vegetation shifts. The entire boreal biome will migrate northward, and within the main boreal forest of Western Canada, deciduous trees will replace conifers. The main objective of our research was to assess how these vegetation shifts will affect functioning of soil microbial communities and ultimately the overall persistence of boreal soil carbon. In this study, aspen and spruce forest floors from the boreal mixedwood forest of Alberta were incubated in the laboratory for 67 days without (control) and with the addition of three distinct 13C labeled substrates (glucose, aspen leaves, and aspen roots). Our first objective was to compare aspen and spruce substrate utilization efficiency (SUE) in the case of a labile C source (13C-glucose). For our second objective, addition of aspen litter to spruce forest floor mimicked future vegetation shifts, and we tested how this would alter substrate use efficiency in the spruce forest floor compared to the aspen. Tracking of carbon utilization by microbial communities was accomplished using 13C-PLFA analysis, and 13C-CO2 measurements allowed quantification of the relative contribution of each added substrate to microbial respiration. Following glucose addition, the aspen community showed a greater 13C-PLFA enrichment than the spruce throughout the 67-day incubation. The spruce community respired a greater amount of 13C glucose, and it also had a much lower glucose utilization efficiency compared to the aspen. Following addition of aspen litter, in particular aspen leaves, the aspen community originally showed greater total 13C-PLFA enrichment, although gram positive phospholipid fatty acids (PLFAs) were significantly more enriched in the spruce community. While the spruce community respired a greater amount of the added 13C-leaves, both forest floor types showed comparable substrate utilization efficiencies by Day 67. These results indicate that a shift from spruce to aspen may lead to a greater loss of the aspen litter through microbial respiration, but that incorporation into microbial biomass and eventually into the more persistent soil carbon pool may not be affected.


Author(s):  
Marilyn W. Walker ◽  
Mary E. Edwards

Historically the boreal forest has experienced major changes, and it remains a highly dynamic biome today. During cold phases of Quaternary climate cycles, forests were virtually absent from Alaska, and since the postglacial re-establishment of forests ca 13,000 years ago, there have been periods of both relative stability and rapid change (Chapter 5). Today, the Alaskan boreal forest appears to be on the brink of further significant change in composition and function triggered by recent changes that include climatic warming (Chapter 4). In this chapter, we summarize the major conclusions from earlier chapters as a basis for anticipating future trends. Alaska warmed rapidly at the end of the last glacial period, ca 15,000–13,000 years ago. Broadly speaking, climate was warmest and driest in the late glacial and early Holocene; subsequently, moisture increased, and the climate gradually cooled. These changes were associated with shifts in vegetation dominance from deciduous woodland and shrubland to white spruce and then to black spruce. The establishment of stands of fire-prone black spruce over large areas of the boreal forest 5000–6000 years ago is linked to an apparent increase in fire frequency, despite the climatic trend to cooler and moister conditions. This suggests that long-term features of the Holocene fire regime are more strongly driven by vegetation characteristics than directly by climate (Chapter 5). White spruce forests show decreased growth in response to recent warming, because warming-induced drought stress is more limiting to growth than is temperature per se (Chapters 5, 11). If these environmental controls persist, projections suggest that continued climate warming will lead to zero net annual growth and perhaps the movement of white spruce to cooler upland forest sites before the end of the twenty-first century. At the southern limit of the Alaskan boreal forest, spruce bark beetle outbreaks have decimated extensive areas of spruce forest, because warmer temperatures have reduced tree resistance to bark beetles and shortened the life cycle of the beetle from two years to one, shifting the tree-beetle interaction in favor of the insect (Chapter 9).


2010 ◽  
Vol 19 (8) ◽  
pp. 1026 ◽  
Author(s):  
Christopher Carcaillet ◽  
Pierre J. H. Richard ◽  
Yves Bergeron ◽  
Bianca Fréchette ◽  
Adam A. Ali

The hypothesis that changes in fire frequency control the long-term dynamics of boreal forests is tested on the basis of paleodata. Sites with different wildfire histories at the regional scale should exhibit different vegetation trajectories. Mean fire intervals and vegetation reconstructions are based respectively on sedimentary charcoal and pollen from two small lakes, one in the Mixedwood boreal forests and the second in the Coniferous boreal forests. The pollen-inferred vegetation exhibits different trajectories of boreal forest dynamics after afforestation, whereas mean fire intervals have no significant or a delayed impact on the pollen data, either in terms of diversity or trajectories. These boreal forests appear resilient to changes in fire regimes, although subtle modifications can be highlighted. Vegetation compositions have converged during the last 1200 years with the decrease in mean fire intervals, owing to an increasing abundance of boreal species at the southern site (Mixedwood), whereas changes are less pronounced at the northern site (Coniferous). Although wildfire is a natural property of boreal ecosystems, this study does not support the hypothesis that changes in mean fire intervals are the key process controlling long-term vegetation transformation. Fluctuations in mean fire intervals alone do not explain the historical and current distribution of vegetation, but they may have accelerated the climatic process of borealisation, likely resulting from orbital forcing.


Ecosystems ◽  
2010 ◽  
Vol 13 (8) ◽  
pp. 1227-1238 ◽  
Author(s):  
Dominic Senici ◽  
Han Y. H. Chen ◽  
Yves Bergeron ◽  
Dominic Cyr

2016 ◽  
Vol 16 (14) ◽  
pp. 9047-9066 ◽  
Author(s):  
Lisa R. Welp ◽  
Prabir K. Patra ◽  
Christian Rödenbeck ◽  
Rama Nemani ◽  
Jian Bi ◽  
...  

Abstract. Warmer temperatures and elevated atmospheric CO2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changes are unclear. Here, we examine CO2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena). Both used measured atmospheric CO2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60° N excluding Europe (10° W–63° E), neither inversion finds a significant long-term trend in annual CO2 balance. The boreal zone, the latitude region from approximately 50–60° N, again excluding Europe, showed a trend of 8–11 Tg C yr−2 over the common period of validity from 1986 to 2006, resulting in an annual CO2 sink in 2006 that was 170–230 Tg C yr−1 larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO2 uptake, consistent with strong greening trends, is offset by increased fall CO2 release, resulting in a net neutral trend in annual fluxes. The inversion fluxes from the arctic and boreal zones covering the permafrost regions showed no indication of a large-scale positive climate–carbon feedback caused by warming temperatures on high northern latitude terrestrial CO2 fluxes from 1985 to 2012.


Sign in / Sign up

Export Citation Format

Share Document